Spectroscopy and dynamics of double proton transfer in formic acid dimer.

نویسندگان

  • Kasper Mackeprang
  • Zhen-Hao Xu
  • Zeina Maroun
  • Markus Meuwly
  • Henrik G Kjaergaard
چکیده

We present the isolated gas phase infrared spectra of formic acid dimer, (HCOOH)2, and its deuterated counterpart formic-d acid, (DCOOH)2, at room temperature. The formic acid dimer spectrum was obtained by spectral subtraction of a spectrum of formic acid vapor recorded at low pressure from that recorded at a higher pressure. The spectra of formic acid vapor contain features from both formic acid monomer and formic acid dimer, but at low and high pressures of formic acid, the equilibrium is pushed towards the monomer and dimer, respectively. A similar approach was used for the formic-d acid dimer. Building on the previous development of the Molecular Mechanics with Proton Transfer (MMPT) force field for simulating proton transfer reactions, molecular dynamics (MD) simulations were carried out to interpret the experimental spectra in the OH-stretching region. Within the framework of MMPT, a combination of symmetric single and double minimum potential energy surfaces (PESs) provides a good description of the double proton transfer PES. In a next step, potential morphing together with electronic structure calculations at the B3LYP and MP2 level of theory was used to align the computed and experimentally observed spectral features in the OH-stretching region. From this analysis, a barrier for double proton transfer between 5 and 7 kcal mol(-1) was derived, which compares with a CCSD(T)/aug-cc-pVTZ calculated barrier of 7.9 kcal mol(-1). Such a combination of experimental and computational techniques for estimating barriers for proton transfer in gas phase systems is generic and holds promise for further improved PESs and energetics of these important systems. Additional MD simulations at the semi-empirical DFTB level of theory agree quite well for the center band position but underestimate the width of the OH-stretching band.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative and a qualitative study of the resonance assisted double proton transfer in formic acid dimer

We have performed ab initio molecular dynamics simulations to study the nature of the synchronous double proton transfer in formic acid dimer. In order to understand the evolution of the bonding during the double proton transfer, we have used the electron localization function and the molecular orbital isosurfaces. During the dynamics of the double proton transfer in formic acid dimer the two f...

متن کامل

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a pi* excess electron.

The neutral and anionic formic acid dimers have been studied at the second-order Moller-Plesset and coupled-cluster level of theory with single, double, and perturbative triple excitations with augmented, correlation-consistent basis sets of double- and triple-zeta quality. Scans of the potential-energy surface for the anion were performed at the density-functional level of theory with a hybrid...

متن کامل

Inner-shell excitation spectroscopy and fragmentation of small hydrogen-bonded clusters of formic acid after core excitations at the oxygen K edge.

Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters. Cluster-specific exci...

متن کامل

Electron collisions with formic acid monomer and dimer.

Processes induced by the attachment of slow electrons to formic acid and its hydrogen-bonded dimer were studied. The elastic cross section and the cross section for the excitation of low quanta of discrete vibrations were found to be of a similar magnitude for both targets. A dramatic difference was found in the excitation of a vibrational quasicontinuum in the 1-2 eV range with the ejection of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 35  شماره 

صفحات  -

تاریخ انتشار 2016